- Let (A, B) and (C, D) be proper¹ Dedekind cuts of $(\mathbb{Q}, <)$. Verify that the following are 1. Dedekind cuts.
 - (a) $(A+C, \mathbb{Q} \setminus (A+C))$, where $A+C := \{a+c : a \in A, c \in C\}$.
 - (b) $\left(\mathbb{Q}\setminus(-\bar{A}), -\bar{A}\right)$, where $\bar{A}:=A\cup \operatorname{Ends}(A)$ and $-\bar{A}:=\left\{-a: a\in \bar{A}\right\}$
 - (c) $\left(\mathbb{Q} \setminus (B \cdot D), B \cdot D\right)$ if $B, D \subseteq \mathbb{Q}^{\geq 0}$, where $B \cdot D := \{b \cdot d : b \in B, d \in D\}$ and $\mathbb{Q}^{\geq 0} := \{q \in \mathbb{Q} : q \geq 0\}.$
- 2. In this problem, we think of \mathbb{R} as the set of all proper Dedekind cuts of $(\mathbb{Q}, <)$.
 - (a) Define the operations of addition and negation on \mathbb{R} using (a) and (b) of Problem 1 and verify that your definition agree with the usual + and - on \mathbb{Q} .
 - (b) Define the operation of multiplication on \mathbb{R} using (b) and (c) of Problem 1 and verify that your definition agrees with that multiplication on \mathbb{Q} .
- Let d be a metric on a set X and prove that $d': X^2 \to [0,1]$ defined by d'(x,y) :=3. $\min\{1, d(x, y)\}$ is also a metric on X.
- Let (X, d_X) and (Y, d_Y) be metric spaces. 4.
 - (a) (Very optional) For each positive $p \in \mathbb{N}$, define $d_p : (X \times Y)^2 \to [0, \infty)$ by

$$d_p((x_1, y_1), (x_2, y_2)) := \sqrt[p]{d(x_1, x_2)^p + d(y_1, y_2)^p}.$$

Show that d_p is a metric on $X \times Y$.

HINT: For p = 2, this follows from Cauchy–Schwartz inequality from linear algebra. For other p, one has to use Hölder's inequality, which is really not relevant to this class.

(b) Define $d_{\infty}: (X \times Y)^2 \to [0, \infty)$ by

$$d_{\infty}((x_1, y_1), (x_2, y_2)) := \max\{|x_1 - x_2|, |y_1 - y_2|\}.$$

Show that d_{∞} is a metric on $X \times Y$.

(c) (Optional) Show that for any $x \in X, y \in Y$,

$$\lim_{p \to \infty} d_p \big((x_1, y_1), (x_2, y_2) \big) = d_\infty \big((x_1, y_1), (x_2, y_2) \big).$$

HINT: Suppose that the maximum is achieved by $|x_1 - x_2|$ and take its p^{th} power out of the root.

Recalling that $2^{\mathbb{N}}$ is the set of all infinite binary sequences, define $d: 2^{\mathbb{N}} \times 2^{\mathbb{N}} \to [0,1]$ by 5. $d(x,y) := 2^{-\Delta(x,y)}$, where $\Delta(x,y) :=$ the least index $n \in \mathbb{N}$ such that $x(n) \neq y(n)$. For example, $\Delta(00101..., 00110...) = 3$, so $d(00101..., 00110...) = 2^{-3} = \frac{1}{8}$. Letting $x, y, z \in 2^{\mathbb{N}}$, prove that $\Delta(x, z) \ge \min \{\Delta(x, y), \Delta(y, z)\}, \text{ and hence,}$

$$d(x, z) \le \max\{d(x, y), d(y, z)\}.$$
 (*)

Conclude that d is a metric on $2^{\mathbb{N}}$.

REMARK: A metric satisfying the stronger condition (*) is called an *ultrametric*.

6. For metric spaces (X, d_X) and (Y, d_Y) , a function $f: X \to Y$ is called an *isometry* if for every $x, x' \in X, d_X(x, x') = d_Y(f(x), f(x'))$. Do problem 12 of 4.1 of Kaplansky's book.

¹Call a Dedekind cut (A, B) proper if both A and B are nonempty.

7. For a metric space (X, d) and $A \subseteq X$, define diam $(A) := \sup_{x,y \in A} d(x, y)$. Do problem 20(a) of 4.1 of Kaplansky's book.