1. Let (A, B) and (C, D) be proper ${ }^{1}$ Dedekind cuts of $(\mathbb{Q},<)$. Verify that the following are Dedekind cuts.
(a) $(A+C, \mathbb{Q} \backslash(A+C))$, where $A+C:=\{a+c: a \in A, c \in C\}$.
(b) $(\mathbb{Q} \backslash(-\bar{A}),-\bar{A})$, where $\bar{A}:=A \cup \operatorname{Ends}(A)$ and $-\bar{A}:=\{-a: a \in \bar{A}\}$
(c) $(\mathbb{Q} \backslash(B \cdot D), B \cdot D)$ if $B, D \subseteq \mathbb{Q}^{\geq 0}$, where $B \cdot D:=\{b \cdot d: b \in B, d \in D\}$ and $\mathbb{Q}^{\geq 0}:=$ $\{q \in \mathbb{Q}: q \geq 0\}$.
2. In this problem, we think of \mathbb{R} as the set of all proper Dedekind cuts of $(\mathbb{Q},<)$.
(a) Define the operations of addition and negation on \mathbb{R} using (a) and (b) of Problem 1 and verify that your definition agree with the usual + and - on \mathbb{Q}.
(b) Define the operation of multiplication on \mathbb{R} using (b) and (c) of Problem 1 and verify that your definition agrees with that multiplication on \mathbb{Q}.
3. Let d be a metric on a set X and prove that $d^{\prime}: X^{2} \rightarrow[0,1]$ defined by $d^{\prime}(x, y):=$ $\min \{1, d(x, y)\}$ is also a metric on X.
4. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces.
(a) (Very optional) For each positive $p \in \mathbb{N}$, define $d_{p}:(X \times Y)^{2} \rightarrow[0, \infty)$ by

$$
d_{p}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right):=\sqrt[p]{d\left(x_{1}, x_{2}\right)^{p}+d\left(y_{1}, y_{2}\right)^{p}}
$$

Show that d_{p} is a metric on $X \times Y$.
Hint: For $p=2$, this follows from Cauchy-Schwartz inequality from linear algebra. For other p, one has to use Hölder's inequality, which is really not relevant to this class.
(b) Define $d_{\infty}:(X \times Y)^{2} \rightarrow[0, \infty)$ by

$$
d_{\infty}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right):=\max \left\{\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right\}
$$

Show that d_{∞} is a metric on $X \times Y$.
(c) (Optional) Show that for any $x \in X, y \in Y$,

$$
\lim _{p \rightarrow \infty} d_{p}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=d_{\infty}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)
$$

Hint: Suppose that the maximum is achieved by $\left|x_{1}-x_{2}\right|$ and take its $p^{\text {th }}$ power out of the root.
5. Recalling that $2^{\mathbb{N}}$ is the set of all infinite binary sequences, define $d: 2^{\mathbb{N}} \times 2^{\mathbb{N}} \rightarrow[0,1]$ by $d(x, y):=2^{-\Delta(x, y)}$, where $\Delta(x, y):=$ the least index $n \in \mathbb{N}$ such that $x(n) \neq y(n)$. For example, $\Delta(00101 \ldots, 00110 \ldots)=3$, so $d(00101 \ldots, 00110 \ldots)=2^{-3}=\frac{1}{8}$. Letting $x, y, z \in 2^{\mathbb{N}}$, prove that $\Delta(x, z) \geq \min \{\Delta(x, y), \Delta(y, z)\}$, and hence,

$$
\begin{equation*}
d(x, z) \leq \max \{d(x, y), d(y, z)\} \tag{*}
\end{equation*}
$$

Conclude that d is a metric on $2^{\mathbb{N}}$.
REMARK: A metric satisfying the stronger condition $(*)$ is called an ultrametric.
6. For metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$, a function $f: X \rightarrow Y$ is called an isometry if for every $x, x^{\prime} \in X, d_{X}\left(x, x^{\prime}\right)=d_{Y}\left(f(x), f\left(x^{\prime}\right)\right)$. Do problem 12 of 4.1 of Kaplansky's book.

[^0]7. For a metric space (X, d) and $A \subseteq X$, define $\operatorname{diam}(A):=\sup _{x, y \in A} d(x, y)$. Do problem 20(a) of 4.1 of Kaplansky's book.

[^0]: ${ }^{1}$ Call a Dedekind cut (A, B) proper if both A and B are nonempty.

